Madras College Maths Department

Higher Maths

Solving Trigonometric Equations

Page	Topic	Textbook
2-3	Solving Trigonometric Equations	8B-1a, e, 2b, d, f 3, , 5. (degree answers) 8D - 1a, c, e, 2a, c, e, g, 3a, c, e, g 4, 6 . (radian answers)
4-5	Solving Equations of the Form: $a \cos ^{2} x+b \cos x+\mathrm{c}=0$ and $a \sin ^{2} x+b \sin x+c=0$	$\begin{aligned} & 8 \mathrm{C}-1 \mathrm{a}, \mathrm{c}, \mathrm{~d}, 2 \mathrm{a}, \mathrm{~b} \\ & 8 \mathrm{E}-1 \mathrm{a}, \mathrm{c} \mathrm{2a}, \mathrm{~b}, \mathrm{c} \end{aligned}$
6	Solving trigonometric equations involving $\sin 2 x$ and $\cos 2 x$ terms	$\begin{aligned} & 8 \mathrm{~F}-2 \mathrm{a}, \mathrm{c}, \mathrm{e}, \mathrm{~g} 3 \mathrm{a}, \mathrm{~b}, \\ & \mathrm{c}, \mathrm{~d} 5,6 \\ & 8 \mathrm{G}-2 \mathrm{a}, \mathrm{c}, 3 \mathrm{a} \end{aligned}$
7-9	Solving Equations of the Form: $a \sin x+b \cos x=\mathrm{c}$	$8 \mathrm{H}-1 \mathrm{a}, \mathrm{b}, 4 \mathrm{a}, 4 \mathrm{e}$
10	Solving Further Trigonometric Equations	8I-1a, c 2a, b, 3
11	Practice Unit Assesment Questions	
13	Homework	

Graph Recap
Trigonometry Maths 102 + Maths 203
Trig Graphs

$$
\text { Period }=1
$$

Amplitude $=360^{\circ}$

$$
\text { Period }=1
$$

Amplitude $=360^{\circ}$

$$
\text { Period }=180^{\circ}
$$

Amplitude cannot be measured.

All of the above waves are described as periodic, they consist of a repeated pattern.

Page 2
Additional examples are available in the Dynamic Maths Study Notes available at http://madrasmaths.com/courses/higher/revison materials higher.html (password: madrasmaths) and at hsn.uk.net

Examples
Solve for $0 \leqslant x \leqslant 360^{\circ}$
(1) $\sqrt{2} \sin x^{\circ}=0.5$
(2) $3 \cos 2 x^{\circ}-1=-2$

Page 3
Additional examples are available in the Dynamic Maths Study Notes available at http://madrasmaths.com/courses/higher/revison materials higher.html (password: madrasmaths) and at hsn.uk.net
(3) $4 \tan (x+45)^{\circ}=-6$
(4) $3 \cos (2 x-120)^{\circ}=2$

$$
(5) \quad 2 \cos \left(3 \pi x+\frac{\pi}{4}\right)=\frac{1}{4} \quad 0 \quad 2 \pi=2 \pi / \pi
$$

6) $3 \tan (2 x+0.2)=0.5$
$0<x<2 \pi$

Solving Equations of the Form:

$a \cos ^{2} x+b \cos x+\mathrm{c}=0$ and $a \sin ^{2} x+b \sin x+\mathrm{c}=0$

1) Solve $2 \cos ^{2} x-\cos x-1=0 \quad 0<x<2 \pi$
2) Solve $3 \sin ^{2} x+8 \sin x=3 \quad 0<x<2 \pi$

Trig Equations containing $\sin 2 x$ and $\cos 2 x$ terms

Examples

$$
\text { (1) } \sin 2 x^{\circ}-\cos x^{\circ}=0 \quad 0 \leqslant x \leqslant 360^{\circ}
$$

(2) $\quad \cos 2 x^{\circ}+\cos x^{\circ}=0$

$$
\text { (3) } 3 \cos 2 x^{\circ}+\sin x^{\circ}-2=0 \quad 0 \leqslant x \leqslant 360^{\circ}
$$

Solving Equations of the Form: $a \sin x+b \cos x=\mathrm{c}$

1) Solve $3 \cos x-2 \sin x=1.3$
$0<x<2 \pi$

Solving Further Trigonometric Equations

We may be able to use the addition formulae at times to help us solve trigonometric equations.

Solve $3 \sin x \sin 30-3 \cos x \cos 30=2 \quad 0<x<360$

Practice Unit Assessments

Practice test 1

1 Solve $\sqrt{2} \cos 2 x^{\circ}=1$, for $0^{\circ} \leq x^{\circ} \leq 180^{\circ}$.

2 Solve $4 \sin 2 t^{\circ}-\cos t^{\circ}=0$, for $0^{\circ} \leq t^{\circ} \leq 180^{\circ}$

3 How many solutions does $\cos ^{2} x=\frac{3}{4}$ have in the interval $\frac{\pi}{4} \leq x \leq 2 \pi$

Practice test 2

1 Solve $2 \cos 2 x=\sqrt{3}$, for $0^{\circ} \leq x \leq 180^{\circ}$.

2 Solve $2 \sin 2 w-\cos w=0$ for $0^{\circ} \leq t \leq 180^{\circ}$.
3 How many solutions does $\sin ^{2} x=\frac{1}{2}$ have in the interval $0 \leq x \leq \frac{\pi}{2}$

Homework 2 - Trigonometric Equations

Paper 1 Questions are non-calculator

1
(a) Express $5 \cos x-2 \sin x$ in the form $k \cos (x+a)$, where $k>0$ and $0<a<2 \pi$.
(b) The diagram shows a sketch of part of the graph of $y=10+5 \cos x-2 \sin x$ and the line with equation $y=12$.

The line cuts the curve at the points P and Q.

Find the x-coordinates of P and Q .

SQA Higher Maths 2016 Paper 2 Question 8
2 Solve the equation

$$
\sin x-2 \cos 2 x=1
$$

$$
\text { for } 0 \leq x<2 \pi \text {. }
$$

SQA Higher Maths 2014 Paper 2 Question 6
3 Solve the equation $\sin 2 x^{\circ}=6 \cos x^{\circ}$ for $0 \leq x \leq 360$.

SQA Higher Maths 2007 Paper 1 Question 6
4)

$$
\text { Solve } 2 \cos 2 x-5 \cos x-4=0 \text { for } 0 \leq x<2 \pi
$$

SQA Higher Maths 2010 Paper 2 Question 4
Solve algebraically the equation

$$
\begin{equation*}
\sin 2 x=2 \cos ^{2} x \quad \text { for } 0 \leq x<2 \pi \tag{6}
\end{equation*}
$$

SQA Higher Maths 2013 Paper 2 Question 8

Unit Assessment Practice 1 Solutions
(2) $4 \sin 2 t-\cos t=0 \quad 0 \leqslant t \leqslant 180^{\circ}$

$$
\begin{aligned}
& 4+2 \sin t \cos t-\cos t=0 \\
& 8 \sin t \cos t-\cos t=0 \\
& \cos t(8 \sin t-1)=0
\end{aligned}
$$

$$
\cos t=0
$$

$$
8 \sin t-1=0
$$

$$
8 \sin t=1
$$

$$
t=90^{\circ} \quad t=7.18,180-7.18
$$

$$
\left(0 \leq t \leq 180^{\circ}\right)
$$

$$
t=7.18^{\circ}, 172.8^{\circ}
$$

$$
\rightarrow t=7.18^{\circ}, 90^{\circ}, 172.8^{\circ}
$$

$$
\begin{aligned}
& \text { (1) } \sqrt{2} \cos 2 x=1 \quad 0 \leq x \leq 180^{\circ} \\
& \cos 2 x: \frac{1}{\sqrt{2}} \\
& \cos ^{-1} \frac{1}{\sqrt{2}}=45^{\circ} \\
& \begin{aligned}
2 x=45, & 360-45, \ldots \\
+360 & \frac{5}{180+} / \text { A } \\
&
\end{aligned} \\
& 2 x=45,315,405,675 \\
& x=22.5^{\circ}, 157.5^{\circ}, 2025^{\circ}, 337.5^{\circ} \quad 0 \leqslant x \leq 188
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) } \cos ^{2} x=\frac{3}{4} \\
& \cos x= \pm \sqrt{\frac{3}{4}} \\
& = \pm \frac{\sqrt{3}}{2} \quad \begin{array}{l}
\text { (Need to look in all } 4 \\
\text { quadrants as both posituved }
\end{array} \\
& \text { negative valuer). } \\
& \cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6} \text { radius. } \\
& x=\frac{\pi}{6}, \pi-\frac{\pi}{6}, \pi+\frac{\pi}{6}, 2 \pi-\frac{\pi}{6} \\
& x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{1 / \pi}{6} \\
& \text { bat } \frac{\pi}{4} \leq x \leq 2 \pi \text { so only } 3 \text { solutions }
\end{aligned}
$$

Unit Assessment Practice 2 Solutions

(1) $2 \cos 2 x=\sqrt{3} \quad 0 \leqslant x \leqslant 180^{\circ}$

$$
\begin{aligned}
& \cos 2 x=\frac{\sqrt{3}}{2} \\
& \cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=30^{\circ} \\
& 2 x=30,360-30, \ldots \\
& 2 x=30,330,390,690 \\
& x=15^{\circ}, 165^{\circ}, 195^{\circ}, 345^{\circ} \quad 0 \leqslant x \leqslant 180^{\circ}
\end{aligned}
$$

(2) $2 \sin 2 \omega-\cos \omega=0$

$$
2 \times 2 \sin \omega \cos \omega-\cos \omega=0
$$

$$
\cos \omega(4 \sin \omega-1)=0
$$

$$
\cos \omega=0 \quad 4 \sin \omega-1=0
$$

$$
4 \sin \omega=1
$$

$\omega=90^{\circ}$

$$
\begin{aligned}
& \sin \omega=\frac{1}{4} \\
& \omega=14.5^{\circ}, 165.5^{\circ}
\end{aligned}
$$

$$
\omega=14.5^{\circ}, 90^{\circ}, 165.5^{\circ}
$$

(3) $\sin ^{2} x=\frac{1}{2}$

$$
\sin x= \pm \sqrt{\frac{1}{2}}
$$

$$
\begin{aligned}
& \sin x= \pm \frac{1}{\sqrt{2}} \quad(\text { Need } 10 \text { look in all } 4 \text { quadrants) } \\
& \sin ^{-1} \frac{1}{\sqrt{2}}=\frac{\pi}{4}
\end{aligned}
$$

$$
x=\frac{\pi}{4}, \pi-\frac{\pi}{4}, \pi+\pi / 4,2 \pi-\pi / 4
$$

$$
x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{\lambda \pi}{4} \quad 0 \leq x \leq \pi / 2
$$

only one solution in the interval $0 \leq x \leq \frac{\pi}{2}$

